Expression and localization of the spore wall protein SWP26 of Nosema bombycis in the silkworm BmN cell line
نویسندگان
چکیده
The microsporidian spore wall proteins, as the main components of the spore wall, play a key role in spore adherence to host cells and in recognition of the parasite by the host during the invasion process. In this study, we used the Bac-to-Bac baculovirus expression system to express the spore wall protein SWP26, fused to enhanced green fluorescent protein (EGFP), in the silkworm BmN cell line. The SWP26 and EGFP genes were inserted into the baculovirus transfer vector pFastBac1. The transfer vector pFastBac1-swp26-egfp was transformed into the bacterium Escherichia coli DHl0Bac/Bombyx mori nucleopolyhedrovirus (BmNPV) to construct the recombinant vBm bacmid. The vBm bacmid DNA was then used to transfect BmN cells to obtain the recombinant baculovirus. Western blotting analysis of total protein lysates in BmN cells infected by the recombinant virus showed a protein band of approximately 51 kDa, which corresponded to the deduced molecular weight of the swp26-egfp fusion protein. In addition, a fluorescence signal was observed in the cytoplasm and nucleoplasm of transfected cells, indicating that SWP26 had been successfully expressed in BmN cells. The SWP26 expression system established in this study lays the foundation for additional molecular and cellular studies, especially those focused on the interaction between the SWP26 protein of Nosema bombycis and the proteins of the silkworm, Bombyx mori.
منابع مشابه
Nosema bombycis (Microsporidia) suppresses apoptosis in BmN cells (Bombyx mori).
Nosema bombycis (N. bombycis, Nb) is a fungus-related and obligate intracellular parasite that causes chronic pebrine disease in the silkworm. After infecting the host, spores obtain energy from host cells and survive for several days. This symbiosis between the pathogen and the host cell suggests that N. bombycis prevents apoptosis and reactive oxygen species (ROS) production of host cells to ...
متن کاملEngineered resistance to Nosema bombycis by in vitro expression of a single-chain antibody in Sf9-III cells
Nosema bombycis is a destructive, obligate intracellular parasite of the Bombyx mori. In this study, a single-chain variable fragment (scFv) dependent technology is developed for the purpose of inhibiting parasite proliferation in insect cells. The scFv-G4, which we prepared from a mouse G4 monoclonal antibody, can target the N. bombycis spore wall protein 12 (NbSWP12). Indirect immunofluoresce...
متن کاملA Monoclonal Antibody That Tracks Endospore Formation in the Microsporidium Nosema bombycis
Nosema bombycis, the first identified microsporidium, is a destructive pathogen of the silkworm Bombyx mori and causes severe worldwide economic losses in sericulture. Major microsporidian structural proteins, such as the spore wall protein (SWP), are known to be involved in host invasion. In this study, the reactivity of the monoclonal antibody 2B10 was tested against an endospore protein of N...
متن کاملQuantitative Proteomic Analysis of Germination of Nosema bombycis Spores under Extremely Alkaline Conditions
The microsporidian Nosema bombycis is an obligate intracellular pathogen of the silkworm Bombyx mori, causing the epidemic disease Pebrine and extensive economic losses in sericulture. Although N. bombycis forms spores with rigid spore walls that protect against various environmental pressures, ingested spores germinate immediately under the extremely alkaline host gut condition (Lepidoptera gu...
متن کاملGenome-Wide Transcriptional Response of Silkworm (Bombyx mori) to Infection by the Microsporidian Nosema bombycis
Microsporidia have attracted much attention because they infect a variety of species ranging from protists to mammals, including immunocompromised patients with AIDS or cancer. Aside from the study on Nosema ceranae, few works have focused on elucidating the mechanism in host response to microsporidia infection. Nosema bombycis is a pathogen of silkworm pébrine that causes great economic losses...
متن کامل